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A New Method for Least-squares Refinement of Stability Constants 
By A. Sabatini and A. Vacca,’ Laboratorio C.N.R., lstituto di Chimica Generale dell‘Universit8, Via J. Nardi 39, 

501 32 Firenze, Italy 

Formation constants of metal complexes have been determined from pH titration data by use of a new method of 
calculation. In this method the sum of the squared tesiduals of all the mass balance equations is minimised with 
respect to the unknown parameters, the partial derivatives being evaluated analytically. The shifts of the adjustable 
parameters, calculated from a least-squares cycle, are optimised so that the maximum decrease of the error square 
sum is obtained for that cycle. A computer programme, based on this method, has been written and i ts performance 
has been compared with those obtained using other programmes previously described. 

MANY procedures have been described to calculate 
stability constants of metal complexes and recently 
two reviews have been published.ls Digital computers 
have been increasingly used for computing stability 
constants and many programmes are now available, 
which are generally based on the non-linear Gauss- 
Newton least-squares m e t h ~ d . ~  This method is used 
in the procedure introduced by Tobias and Yasuda 4 and 
developed by Perrin’s school. The computer programme 
SCOGS5 is the most recent one based on this 
procedure and uses the conventional least-squares 
approach to calculate the shifts in the constants, the 
partial derivatives being obtained numerically by 
incrementing the constants. Another method, due to 
Silldn and his co-workers,e is employed in programmes, 
as LETAGROP, which use the ‘ pit-mapping ’ approach. 
In these programmes an error square sum is still mini- 
mised: this sum is assumed to be a quadratic function 
of n unknowns, which may be represented as a paraboloid 
in (n + 1)-dimensional space and the procedure is 
designed to find the minimum of this paraboloid. 

Both methods require a process of numerical differenti- 
ation, either for calculating the elements of the design 
matrix (in SCOGS) or for calculating the coefficients of 
the second-degree function (in LETAGROP) . Numerical 
differentiation presents two main disadvantages, i.e., it 
is slow and it lacks precision owing to the finite incre- 
ment used in the differentiation. 

This paper describes a new method for the least- 
squares refinement of stability constants, where the 
derivatives are evaluated analytically. In this method, 
which may use either the Gauss-Newton or the Newton- 
Raphson ’ least-squares approach, the optimisation of 
the calculated shifts8 is introduced. It has been 
claimed9 that in non-linear problems the Newton- 
Raphson method is more powerful than the conventional 
Gauss-Newton method. It has been shown, further, 
that the optimisation of the shifts reduces the number of 
cycles needed to reach the minimum and, in some cases, 
is able to overcome problems of di~ergence.~ 
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THEORY 

Least-squares Method-The least-squares method 
is employed to calculate the set of m parameters 
x,, x2, . . . x,, which minimise the error square sum (1) 

n 

i = l  
u = 2 wcfoi -ji(xl, x2, . . . x,)12 (n 2 m) (1) 

where f”i are observed quantities, h(x,, x2, . . . xm) are 
the corresponding calculated values, according to 
functional relationships which are assumed to be known, 
and wi are the weights assigned to each observation. 
The above equation can be expressed in matrix notation 
as (2) where v is a column vector, whose n elements vi 

u = G W V  (2) 

are the residuals f”i - h(xl, x2, . . . x,) and W = 
diag(w,, w2, . . . wn) is the diagonal weight matrix. 

Let g be the gradient vector, whose elements g;- 
[equation (3)] are equal to aU/axj, or, in matrix notation, 

n 
gj = -2 2 zetiviaf/axj ( j  = 1, 2, . . m) (3) 

i = l  

equation (4) where the n x m matrix A is the design 

g = -2Awv (4) 

matrix, whose elements 6j are the partial derivatives 
af,./axj. In the minimum of U ,  g must be a zero vector, 
that isgj = 0 ( j  = 1, 2, . . . m). 

If the functionsh are linear in the parameters, a set 
of m linear equations is obtained and the m unknown 
parameters can be evaluated directly by simultaneous 
solution of these equations. 

Should the functions be non-linear, a starting vector 
of the parameters a: = {xk) close to the solution of the 
problem is needed. The elements gj will be not equal 
to zero. A first-order Taylor expansion about the 
starting vector i~ leads to equation (5) .  

m 

Agj = 2 (ag;./axk)Axfi ( j  = 1,2,  . . . m) (5) 
k = l  

The m shifts Axk can be evaluated by solving the 
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system of m linear equations (6), or, in matrix notation, 
m 

2 (agj/aXk)AXk = -gj (i = 1, 2, . . * ?TZ) (6) 
k = l  

equation (7), where Hi s  a nz x rn matrix, whose elements 

HS = -g = 2AWv (7) 

hjk are the partial derivatives agj/axk and s is the cor- 
rection vector (Axk}. The elements of the matrix H 
are (8). 

n 

i = l  
hjk = 2 2 wi[(afi/axj)(afi/axk) - aia2f,/axjaxk] (8) 

Let C be a m X ??z matrix, whose elements cjk are 
given by equation (9) and, considering equations (4) 

n 

i = l  
cjk = 2 wivia2f,/axjaxk (9) 

(AWA - C)S = J W U  

and (7), we can write equations (10) or (11) where B is 

(10) 

BS = AWV (11) 

(12) 

given by equation (12). 

B = XWA - C = $H 

Equation (1 1) gives the set of normal equations of the 
Newton-Raphson least-squares method. In  the well 
known Gauss-Newton method the second derivatives 
azf/axjaxk are neglected, that is, the matrix C is con- 
sidered to be a zero matrix. 

The correction vector s is obtained [equation (13)] by 

s = B-ldWv (13) 

multiplying both sides of equation (11) from the left 
by B-l. Because of the approximation due to the 
truncation of the Taylor expansion, the correction s to 
the starting vector x will only lead to a better approxim- 
ation to the solution. With an iterative procedure 
convergence towards the minimum will be obtained. 

When the minimum value of the function U ,  Urnin., has 
been reached, the standard deviations of the parameters 
are the square-roots of the diagonal elements of the 
variance-covariance matrix M, of the parameters lo 

[equation (14)]. 

(14) figz - Urnin. B-1 
?%-m 

,4$plication to the ReJinenzent of Stability Constants.- 
A method, widely used in the determination of stability 
constants of metal complexes in aqueous solution, 
employs pH titration data for systems containing one 
metal M and one ligand L. At each point of the 
titration curve an equilibrium is established among 
different species whose general formula is H,M,L, 

lo Ref. 3, p. 130. 
11 A. Vacca, D. Arenare, and P. Paoletti, Inorg. Chem., 1966, 

5, 1384. 

(charges are omitted for clarity and generality; for 
details on the symbolism, see ref. 11). The concen- 
tration of H,M,L, is given by equation (15), where ppn, 

[HpMqLvI = Pp*~~Hl~[Mlwlr (15) 

is the formation constant of the species under consider- 
ation and [HI, [MI, and [L] are the concentrations at  the 
equilibrium of the hydrogen ion, of the free metal ion, 
and of the free ligand, respectively. 

For each point the mass-balance equations (16)-(18) 

TM = + ~ ~ ~ ~ q r [ H ~ p [ M l q ~ L l f  (16) 

TL = [LI + ~~Ppp,[Hl~[Ml~[Ll' (17) 

TH = [HI + ~~@iqr[H]p[M]P[L]7 (18) 

must hold, where TM,  TL, and T H  are the analytical 
concentrations of the metal, ligand, and acid respectively, 
the sum being extended over all the species H,M,L,, 
which are assumed to be present in solution. 

The unknown parameters in these equations are [hf] 
and [L] for each point and the stability constants P p q f .  
The values of [HI are obtained from the potentiometric 
measurement. If a set of n points is considered, 31.t 
equations will result with 2n + m unknowns, where m 
is the number of stability constants to be determined. 

Let fol, f o 2 ,  and f o 3  denote the analytical concen- 
trations ( T M ,  TL, and TH, respectively) for the first 
point, to4, f o 6 ,  and f O6 those relative to the second point, 
and so on. Similarly the unknown concentrations [MI 
and [L] for the first point will be denoted by x1 and x2, 
those for the second point by x3 and x4, and so on. The 
m unknown constants will be denoted by x ~ ~ + ~ ,  xZns2, 

* ' *2n+m. 
The error square sum is defined as in equation (19) 

3n 3n 

where wi is the weight assigned to the ith experimental 
analytical concentration and fi is the corresponding 
value calculated according to equations (16-18). Since 
ji are explicit functions, their derivatives with respect 
to  the parameters x j  can be analytically evaluated. 

The unknown parameters may take values in a wide 
range of order of magnitude. Hence, for the practical 
application of the method, all the partial derivatives 
afi/axj and azf,/axjaxk are multiplied by the values of 
the parameters, x3, and xj and xk, respectively. As a 
consequence, the elements of the matrices A and C will 
be (20) and (21) and the correction vector, s,  which is 

aij = xjafi/axj (20) 

ctj  = 2 wkvk%iTi a z f k /  ax&j (21) 
3n 

k = l  

obtained by solviiig equation (13), will contain the 
relative shifts of the parameters given by (22). For 

(22) 
1 si = -  AX^ 
xi 
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each point the analytical concentrations are only 
functions of [MI and [L] at that point and of the con- 
stants Ppnz. Thus the derivatives of fl, f2, and f3 will be 
non-vanishing only with respect to xl, x2, x2n+l,  . . . xk+,, 
those of f4, f5, and fs will be non-vanishing only with 
respect to x3, x4, x ~ ~ + ~ ,  . . . x , ~ + ~ ,  and so on. Therefore, 
the design matrix A takes the form shown in Figure 1. 

equations in the Newton-Raphson method [obtained 
from equation (12)] has the same form as the matrix 
AWA (Figure 2). 

According to equation (13), inversion of the matrix B 
must be performed to obtain the vector s of the cor- 
rections of the set of input parameters. Owing to the 
considerable dimensions of the matrix B, whose order is 
(2n + m) x (2n + m), the inversion of this matrix is 
not feasible with medium-size computers. This trouble 
can be easily overcome, if the matrix B is transformed into 
a block-diagonal matrix: in this case the problem is 
reduced to the inversion of each block along the diagonal. 
Taking advantage of the particular form of the matrix 
B, which contains a large number of zero-elements, we 
can find a new matrix D ,  such that f iBD will be a 
strictly block-diagonal matrix. The matrix D is a 
triangular matrix with unit diagonal and contains a 
2n x-m block of non-zero elements above the diagonal 
(submatrix Dl) ; all the other elements are equal to zero. 

For the calculation of the elements of the matrix D ,  it 
is convenient to consider the partitioning (23) of the 

(23) B =  B1 B2 

Is2 B,l 

matrix B into the 2n x 2.12, 2n x m, m x 21.2, and 

B and identically partitioned, as in (24), where IZn and 
Let US take a square matrix D of the same order of 

FIGURE 1 Form of the design matrix A of order 3n x (2n + m). submatrices, Bl, B2, ' 2 9  and B3, respectively* 
The non-zero elements are in the shaded blocks. 
n 3 x 2 blocks and one 3n x 412 block 

There are 

FIGURE 2 Form of the symmetric matrix of the normal 
Along the diagonal there are n 2 x 2 blocks and 

The non-vanishing elements are in the 
equations. 
one m x m block. 
shaded blocks 

The matrix AWA contains the coefficients of the 
normal equations for the Gauss-Newton method and has 
the form shown in Figure 2. For the Newton-Raphson 
approach, the matrix C, previously defined, must be 
subtracted from the matrix AWA. The elements, 
which are zero in the matrix AWA, are zero also in the 
matrix C. Therefore, the matrix B of the normal 

Im are two unit submatrices of order 2n x 2n and 
m x m, respectively, and 0 a zero m x 2n submatrix. 

By imposing the The product f iBD is given by (25). 

1 (25) b1Bl + s, B, + B,01+ f i l (Wl+  B,) 
Bl B l D l +  B, 

condition (26) the matrix 5 B D  becomes (27) which is a 

BIDl + B, = 0 (26) 

block-diagonal matrix with n 2 x 2 blocks (submatrix 
Bl) and one m x m block (submatrix B3 + B#,). 

The above procedure is illustrated schematically in 
Figure 3. From equation (26), equation (28) follows, 

Dl = -B1-'B2 (28) 
and the inversion of the submatrix B, is readily 
executable owing to its block-diagonal form. 

Equation (11) can be written as (29) which leads to  

(BBD) (0-1s) = f i i iw~ (29) 

D-IS = ( ~ B D ) - ~ ~ ~ A F v v  (30) 

s = D(D-'s) (31) 

(30). The correction vector s is obtained as (31). 
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factors in least-squares adjustment of stability constants 
has often been ~laimed.~,4 However, in the most recent 
computer programmes (like SCOGS and LETAGROP) 
the approximation of unit weights is generally employed. 
A statistically correct weighting scheme is possible only 
if  good estimates of the elements of the variance- 
covariance matrix of the observations are available. In  
our case the variances associated with the quantities ri (TM, TL, and T H  for each point) can be calculated 
from estimates of the variances of all the experimental 
quantities with use of the usual variance propagation 

The shifts s obtained after each cycle of iteration are 
multiplied by a scalar t ,  such that the largest decrease 
of U for that cycle is obtained (shift optimisation). If 
it is assumed that U(t)  = U ( z  + ts) is a parabolic 
function of t, values of U are calculated for three different 
values of t. It is then possible to obtain the value of t 
for which U(t) is a minimum. The corrected parameters 
are used to obtain the starting vector for the next cycle 
of the iteration. The iterative procedure is stopped 
when each partial derivative (aU/axj )x j  is less than a 
pre-established small quantity (usually 10-9). 

FIGURE 3 Transformation of the matrix B into a block-diagonal matrix. The matrix B)BD presents only n 2 x 2 blocks and 
one m x m block along the diagonal 

For evaluating the standard deviations of the stability 
constants (parameters x % + ~ ,  . . . xZn+J according to  
equation (14), the last m diagonal elements of the matrix 
B-l are requested. The matrix B-l can be obtained as 
(32) or, by use of a partitioning which is identical to that 

B-l = D(fiBD)-lfi  (32) 
described above, one has (33). 

This shows that the last m x m block along the 
diagonal of the matrix (fi.BD)-l is identical to the 
corresponding block of the matrix B-l. The diagonal 
elements of this block are used for computing the 
standard deviations of the stability constants. 

As previously described, a starting vector 2, contain- 
ing initial estimates of the parameters, must be available 
for a non-linear least-squares method. In the present 
case, the vector z must contain approximate values of 
[MI and [L] for each data point and of the complex 
formation constants. This vector is obtained by 
considering a set of plausible values for the stability 
constants and by calculating then the starting values of 
[MI and [L] from equations (16) and (17) for each point. 

The importance of the introduction of weighting 

* This programme has been deposited with the National 
Lending Library under Supplementary Publication No. SUP 
20416 (18 pp., 1 microfiche), for details of this see Notice to 
Authors No. 7 in J .  Chem. SOC. ( A ) ,  1970, Issue No 20. 

rules. These experimental quantities are the number 
of moles of the metal ion, ligand, and acid (or base), the 
volume and the concentration of the titrating solution, 
the experimental e.m.f., the standard potential, and 
the initial volume of the solution. It must be noted, 
however, that for a given titration curve, the errors 
associated with some of these quantities, even if 
originally random, become systematic for all points of 
the curve under consideration. For example, the 
random error on the standard potential for a curve leads 
to  a constant systematic error on all the pH values of 
this curve. Therefore, the calculated variances on the 
observations Ti, because of these systematic errors, will 
not be correct. 

For this reason, the usual application of unit weights, 
while not statistically sound, has the advantage of 
simplifying the problem. 

Alternatively, by analogy with force-const ant 
determinations and, sometimes, with crystallographic 
calculations, a diagonal weighting matrix W ,  where 
wi = 11foi2, might be used. This procedure leads to the 
minimisation of the sum of the squares of the relative 
residuals and it is justifiable when the observed quan- 
tities differ noticeably in order of magnitude and when 
the error expected on each observation is presumed to 
be a constant percentage of the observed quantity. 

RESULTS 

The FORTRAN IV programme, LEAST,12 * for the 
determination of stability constants, based on the present 
method, has been written for the IBM 1130 computer (16 K, 
one disk). This programme allows the alternative use of 
the Gauss-Newton or of the Newton-Raphson method and 

l2 Complete deck listing and instructions of the programme 
LEAST may be obtained by writing to the authors. 

http://dx.doi.org/10.1039/DT9720001693


1972 1697 

the application of either unit weights or weights equal to 
the squared reciprocals of the observed quantities. The 
results, which we have obtained using this programme in 
the solution of three complex-formation equilibria, are 
reported here and compared with those obtained by use of 
tw-o other programmes, SCOGSl and LG/3. SCOGS1 Has 
been obtained from the original programme SCOGSS by 
substituting the subroutine COGSNR with another equiva- 
lent subroutine designed for a system of one metal and one 
ligand ; the values of [MI and [L] for all the points, obtained 
at  each cycle, are stored as a matrix and then used as 
starting values in the next cycle of the iteration. These 
modifications have speeded up the calculations and have 
overcome troubles due to non-convergence of the iterative 
calculation of [MI and [L]. The programme LG/3, which 
uses the same basic approach as the programme LETA- 
GROP, has been described.13 

L = (tpt) 

Time c 

L = (Me,tetren) 

Time e 

L = (Me,en) 

(Me,en) .-This system has been already investigated l5 with 
a previous version of the programme LEAST. The form- 
ation of the following six complex species at the 
equilibrium has been ascertained : CuMe4en2+, Cu(0H) - 
(Me,en)+, C~,(0H),(Me,en),~+, C~,(0H),(Me,en)~+, Cu,- 
(OH),(Me,en),,+, and Cu(OH),(Me,en) . The experimental 
data consisted of a set of 151 readings taken from seven 
different titration curves. 

The results of the calculation are shown in the Table. 
The column headed INPUT contains the starting values of 
the logarithms of the stability constants. In the following 
two columns the results obtained using the programmes 
SCOGSl and LG/3 are listed. The results in the columns 
LEAST NR and LEAST GN have been obtained by the 
programme LEAST with unit weights and by use of the 
Newton-Raphson and Gauss-Newton methods respectively. 
The last column, LEAST WGN, contains the results of 

Logarithms of formation constants obtained by use of different methods of refinement 
Complex INPUT SCOGSl LG/3 LEAST NR LEAST GN LEAST WGN 

NiHL3+ 15.7 15.78(3) 1 5-  7 8 (3) 15-76(4) 1 5.7 6 (4) 1 5-  7 7 (3) 
NiL2+ 8.8 8.702(2) 8-702 (2) 8*702(2) 8*702(2) 8.702 (2) 

0.81 0.5 1 0.36 0.25 0.50 

CuH2L4+ 24.6 24.6 18 (6) 24-619(4) 24.6 13 (4) 24.6 13( 4) 24- 6 1 6 (4) 
CuHL3+ 20.0 20*05( 2) 20.05(2) 20-07( 1) 20-07(1) 20-06( 1) 
CUL2+ 12.2 12.34(3) 12-32(4) 12-32(3) 12-32 (3) 12.3 3 (3) 
Cu(OH)L+ 3.0 3*06(3) 3-02(2) 3.04(3) 3*04(3) 3*04(3) 

1.65 0.86 0.84 0.31 0-58 

CUL2+ 7.4 7*376( 1) 7-377( 2) 7-376 (1) 7*376( 1) 7*378(2) 
Cu (OH) L+ - 0.4 -0*65(6) - 0*65( 7) - 0.66 (7) -0.66(7) -0*46(4) 
Cu,(OH) ,Lz+ - 3.8 -3.66(5) - 3*65(5) - 3*65( 5) - 3.65(5) -3*69(7) 

CU~(OH),L,~+ - 7.9 -8*18(3) -8*14(6) - 8.15(6) - 8.16( 6) - 8-16 (8) 
Cu(OH),L -10.9 -10*91(2) -10*91(2) -10*91(2) -10*91(2) -10-81(2) 

Cu,( OH) ,LZ2+ 2.5 2-59(2) 2.59(2) 2-59(2) 2*59(2) 2.54 (2) 

Time e 7.02 4.99 3.60 0.93 1.83 
b Values in parentheses are standard deviations on the last significant figure. 

eTime/h required for convergence starting from the values reported in the column INPUT (calculations performed on an IBM 1130 
computer). 

4 log Pwr = log ( [HpMqL,] [H]-PIRI]--p[L]-r). 

The experimental data used in the calculations were 
taken from potentiometric investigations on metal complex 
formation, carried out in this laboratory and whose results 
have been already published. 

System NiclzeZ(~~)-Tyi-( 3-amino~ropyZ)amine (tpt) .-This 
system was the subject of a previous investigation l3 and 
the existence of two complexes was established : Ni(Htpt)3+ 
and Ni(tpt)z+. The calculations have been performed 
employing 89 data points taken from three titration curves. 

System Coflfler(r~)-(Me,tetren).-The five-dentate ligand 
(Me,tetren) has the formula (I). In previous work the 

Me Me Me 

Me / ‘Me 

Me ~*CH,*CH,*N*CH,*CH,*N*CH~*CH2*N*CH2*CH2*~Me I I 1 

(1) 

following four complexes have been characterised : 14 

C~(H,Me,tetren)~+, C~(HMe,tetren)~+, CuMe,tetrena+, and 
Cu(OH)Me,tetrenf. In  the calculations 105 data points, 
belonging to five titration curves, were used. 

System Copper (II)-NNN’N’- Tetramethy Zethylenediamine 

l3 A. Dei, P. Paoletti, and A. Vacca, Inorg. Cltem., 1968, 7, 
865. 

the programme LEAST, based on the Gauss-Newton 
method, with a diagonal weight matrix, whose elements wi 
are equal to l/’,a. 

DISCUSSION 

The values of the stability constants, obtained using 
different methods and reported in the Table, agree in 
general within one standard deviation. It follows also 
that the calculations (LEAST NR, LEAST GN, and 
LEAST WGN) based on the method described in this 
paper require shorter running time to reach the minimum 
than the other programmes (LG/3 and SCOGSl). 

It must be pointed out that the number of cycles and, 
then, the time required for convergence, using the two 
last programmes, are critically dependent on the values 
of the increments assigned to each constant in the 
procedure of numerical differentiation. Sometimes, if 
these increments have not been suitably chosen, the 
refinement procedure may diverge. 

The Gauss-Newton method with unit weights (LEAST 
A. Vacca, Ricsrca sci., 1966, 36, 1363. 

l5 E. Arenare, P. Paoletti, A. Dei, and A. Vacca, J.C.S. 
Dalton, 1972, 736. 
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GN) appears to be by far the most rapid method, 
particularly when a large number of stability constants 
are to be refined. Surprisingly, the Gauss-Newton 
method converges in fewer cycles than the Newton- 
Raphson one even if, as shown previously in this paper, 
the first method is less rigorous than the second. The 
introduction of weights equal to the reciprocals of the 
squares of the observed quantities increases the number 
of cycles required to reach the minimum. Moreover the 
values of the stability constants obtained sometimes do 
not agree within one standard deviation with those 
computed using all the other programmes. 

The method of calculation, here described, differs from 
the other methods reported4-6 in a basic point, i.e., the 
concentrations of the free metal ion and free ligand of 
each point are considered as independent variables a t  the 
same level as the stability constants. In  the previous 
methods, the minimisation of the function U is carried 

out by considering only the stability constants as 
adjustable parameters, while [MI and [Lj are calculated 
by simultaneous solution of the mass balance equations 
(16) and (17) for each point. In  this way, only the mass 
balance equation (18) of the acid carries the error 
whereas the other two are rigorously satisfied. This is 
wrong in principle, as the values of TM and TL are 
experimental quantities affected by an error as well as 
the values of TH. 

Further, by considering [MI and [L] as adjustable 
parameters, the analytical differentiation of the function 
U is feasible, making the computation faster and more 
rigorous. 

From the above discussion, we can conclude that the 
Gauss-Newton method with unit weights is the pro- 
cedure to be preferred in the computer refinement of 
stability const ants. 
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